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Chapter 20: 

The CrimeStat Regression Module 
 
 We now describe the CrimeStat regression module.  There are two pages in the module.  
Regression I allows the testing of a model while Regression II allows a prediction to be made 
based on an already-estimated model.  Figure 20.1 displays the Regression I page.  
 

Regression I Module 
 
 Types of Regression Models 

 
In the current version, 18 possible regression models are available with several options 

for each of these:  
 

  MLE Normal (OLS) 
  MCMC Normal 
  MCMC Normal-CAR 
  MCMC Normal-SAR 
  MLE Poisson 
  MLE Poisson with linear dispersion correction (NB1) 
  MLE Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma-CAR 
  MCMC Poisson-Gamma-SAR 
  MCMC Poisson-Lognormal 
  MCMC Poisson-Lognormal-CAR 
  MCMC Poisson-Lognormal-SAR 
  MLE Binomial Logit 
  MLE Binomial Probit 
  MCMC Binomial Logit 
  MCMC Binomial Logit-CAR 
  MCMC Binomial Logit-SAR 
       
 In addition, each of the 12 MCMC models can be run with an exposure (offset) variable 
used to define the population ‘at risk’ allowing a total of 30 possible regression models to be run. 
 

There are two pages in the module.  The Regression I page allows the testing of a model 
while the Regression II page allows a prediction to be made based on an already-estimated  

  



Figure 20.1:

Regression Modeling I Setup Screen
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model. Also, since the Regression I module and Trip Generation module in the Crime Travel 
Demand Model duplicate regression functions, only one of these can be run at a time. 
 

Input Data Set 
  

The data set for the regression module is the Primary File data set.  The coordinate 
system and distance units are also the same.  The routine will not work unless the Primary File 
has X/Y coordinates. 
 
 Dependent Variable 
 
 To start loading the module, click on the ‘Calibrate model’ tab.  A list of variables from 
the Primary File is displayed.  There is a box for defining the dependent variable.  The user must 
choose one dependent variable.  A keystroke trick is to click on the first letter of the variable that 
will be the dependent variable and the routine will go to the first variable with that letter. 
 
 Independent Variables 
 
 There is another box for defining the independent variables.  The user must choose one or 
more independent variables.  In the routine, there is no limit to the number.  Keep in mind that 
the variables are output in the same order as specified in the dialogue so a user might want to 
think how these should be displayed. 
 
 Type of Dependent Variable 
 
 There are five options that must be defined. The first is the type of dependent variable: 
Skewed (Poisson), Normal (OLS), Binomial probit, or Binomial logit (logistic).  The default is a 
Poisson.   
 
 Type of Dispersion Estimate 

 
The second model decision is the type of dispersion estimate to be used.  The choices are 

Gamma, Poisson, Lognormal, and Poisson with linear correction.  For the MLE models, only 
Gamma, Poisson and Poisson with linear correction are available while for the MCMC models, 
only Gamma and Lognormal are available. The default is Gamma.  For the MLE Normal (OLS) 
and MCMC Normal-CAR/SAR models, the dispersion is automatically normal.  For the 
binomial logit or binomial probit, the dispersion is automatically binomial. 
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Type of Estimation Method 
 
 The third option is the type of estimation method to be used: Maximum Likelihood 
(MLE) or Markov Chain Monte Carlo (MCMC).  The default is MLE.  These methods were 
discussed in Chapters 15 and 17 and in appendices B and C.  
 
 Spatial Autocorrelation Estimate 
 
 Fourth, if the user accepts an MCMC algorithm, then a fourth decision is whether to run a 
spatial autocorrelation estimate along with it (a Conditional Autoregressive function - CAR, or a 
Simultaneous Autoregressive function - SAR). The MCMC Poisson-Gamma, MCMC Poisson-
Lognormal, and MCMC Logit functions can be run with a spatial autocorrelation parameter.   
 
 
 
 
 
 Type of Test Procedure 
 

 The fifth, and last model decision, is whether to run a fixed model or a backward 
elimination stepwise procedure (only with the normal or MLE models).  A fixed model includes 
all selected independent variables in the regression whereas a backward elimination model starts 
with all selected variables in the model but proceeds to drop variables that fail the P-to-remove 
test, one at a time.  Any variable that has a significance level in excess of the P-to-remove value 
is dropped from the equation. 
 

If the fixed model is chosen, then all independent variables will be regressed 
simultaneously.  However, if the stepwise backward elimination procedure is selected, the user 
must define a p-to-remove value. The choices are: 0.1, 0.05, 0.01, and 0.001.  The default is 0.01.  
Traditionally, 0.05 is used as a minimal threshold for significance.  We put in 0.01 as the default 
to make the model stricter; with the large datasets that typically occur in police departments, the 
less strict 0.05 criterion would not exclude many independent variables.  But, the user can 
certainly use 0.05 instead. 

 
 MCMC Choices 
 
 If the user chooses the MCMC algorithm, then nine additional decisions have to be made. 
 
  

Note that the CAR model runs quite quickly whereas the SAR model runs very 
slowly.  Unless the data set is small or a SAR model is absolutely essential, we 
recommend using a CAR function for the spatial regression models. 
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  Number of Iterations 
 
The first MCMC decision is the number of iterations to be run.  The default is 25,000.  

The number should be sufficient to produce reliable estimates of the parameters.  Check the MC 
Error/Standard deviation ratio and the G-R statistic to be sure these are below 1.05 and 1.20 
respectively. 
 
  ‘Burn in’ Iterations 

 
The second MCMC decision is the number of initial iterations that will be dropped from 

the final distribution (the ‘burn in’ period).  The default is 5,000.  The number of ‘burn in’ 
iterations should be sufficient for the algorithm to reach an equilibrium state and produce reliable 
estimates of the parameters.  Check the MC Error/Standard deviation ratio and the G-R statistic 
to be sure these are below 1.05 and 1.20 respectively. 

 
  Block Sampling Threshold 

 
The third MCMC decision is whether to run all the records through the MCMC algorithm 

or whether to draw block samples.   This is called the Block Sampling Threshold.  The algorithm 
will be run on all cases unless the number of records exceeds the number specified in the block 
sampling threshold.  The default threshold is 6,000 cases.  If the number of cases exceeds the 
threshold, then the block sampling method is used (see below). 

 
Note that if you raise the run the block sampling threshold for more cases, calculating 

time will increase substantially.  For the non-spatial Poisson-Gamma model, the increase is 
linear.  However, for the spatial Poisson-Gamma model, the increase is exponential.  Further, we 
have found that we cannot calculate the spatial model for more than about 6,000 cases.  In short, 
the block sampling method must be used for spatial models with a large number of cases. 
 
  Average Block Size 
 

The fourth MCMC decision is the number of cases to be drawn in each block sample if 
the total number of records is greater than the block sampling threshold.  The default is 400 
cases.  Note that this is an average.  Actual samples will vary in size.  The output will display the 
expected sample size and the average sample size that was drawn. 
 
  Number of Samples Drawn 
 

The fifth MCMC decision is the number of samples to be drawn if the total number of 
records is greater than the block sampling threshold.  The default is 25.   We have found that 
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reliable estimates can be obtained from 20 to 30 samples especially if the sequence converges 
quickly and even 10 samples can produce meaningful results.  Obviously, the more samples that 
are drawn, the more reliable will be the final results.  But, having more samples will not 
necessarily increase the precision beyond 30. 

 
  Calculate Intercept 

 
The sixth MCMC decision is whether to run the model with or without an intercept 

(constant).  The default is with an intercept estimated.  To run the model without the intercept, 
uncheck the ‘Calculate intercept’ box. 
 
  Spatial Autocorrelation Estimate 
 
 The seventh MCMC decision is whether to run a spatial autocorrelation model.  There are 
two alternative spatial autocorrelation functions that can be used, a Conditional Autoregressive 
(or CAR) or a Simultaneous Autoregressive (or SAR).  These were defined in Chapter 19. The 
default is no spatial autocorrelation.  Note that estimating the SAR function takes a long time, 
much longer than for the CAR model.  Unless there is a reason for using the SAR, we 
recommend using the CAR for any spatial autocorrelation component. 
 
  Calculate Exposure/Offset 
 
 The eighth MCMC decision is whether to run a risk model.  If the model is a risk or rate 
model, then an exposure (offset) variable needs to be defined.   Check the ‘Calculate 
exposure/offset’ box and identify the variable that will be used as the exposure variable.  The 
coefficient for this variable will automatically be 1.0. 
 
  Advanced Options 
 

There is also a set of advanced options for the MCMC algorithm.  Figure 20.2 displays 
the advanced options dialogue.  We would suggest keeping the default values initially until you 
become very familiar with the routine. 
 
   Initial parameters values for Phi (φ) 

 
The ninth, and last, MCMC decision is the prior values used for the different parameters 

being estimated.  The MCMC algorithm requires an initial estimate for each parameter.  There 
are default values that are used.  For the beta coefficients (including the intercept), the default 
values are 0. This assumes that the coefficient is ‘not significant’ and has a large variance.  It is 
frequently called a ‘non-informative’ prior. These are displayed as a blank screen for the Beta  



Figure 20.2:

Advanced Options for MCMC Poisson-Gamma-CAR Model
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box.  However, estimates of the beta coefficients can be substituted for the assumed 0 
coefficients. To do this, all independent variable coefficients plus the intercept (if used) must be 
listed in the order in which they appear in the model and must be separated by commas.  Do not 
include the beta coefficients for the spatial autocorrelation, ߔ௜, term (if used). 

 
For example, suppose there are three independent variables.  Thus, the model will have 

four coefficients (the intercept and the coefficients for each of three independent variables).  
Suppose a prior study had been done in which a Poisson-Gamma model was estimated as: 

 

௜ܻ ൌ ݁ସ.ହା଴.ଷ௑భ೔ିଶ.ଵ௑మ೔ାଷ.ସ௑య೔          (20.1) 
 
 The researcher wants to repeat this model but with a different data set and assumes that 
the model using the new data set will have coefficients similar to the earlier research.  Thus, the 
following would be specified in the box for the betas under the advanced options: 
 
 4.5, 0.3, -2.1, 3.4                             (20.2) 

 
The routine will use these values for the initial estimates of the parameters before starting 

the MCMC process (with or without the block sampling method).  The advantage is that the 
distribution will converge more quickly (assuming the model is appropriate for the new data set). 

 
Rho (ρ) and Tauphi (τϕ) 

 
 The spatial autocorrelation component, Φ, is made up of three separate sub-components, 
called Rho (ρ), Tauphi (τϕ), and Alpha (α, see formula 19.5 in chapter 19).  These are additive.   
 
 Rho is roughly a global component that applies to the entire data set.  Tauphi is roughly a 
neighborhood component that applies to a sub-set of the data.  Alpha is essentially a localized 
effect.  The routine works by estimating values for Rho and Tauphi but uses a pre-defined value 
for Alpha.  The default initial values for Rho and Tauphi are 0.5 and 1 respectively.  The user 
can substitute alternative values for these parameters. 
 
   Alpha (α) 
 
 Alpha (α) is the exponent for the distance decay function in the spatial model.  
Essentially, the distance decay function defines the weight to be applied to the values of nearby 
records. The weight can be defined by one of three mathematical functions.  First, the weight can 
be defined by a negative exponential function where: 
 

ݐ݄ܹ݃݅݁  ൌ 	 ݁ିఈௗ೔ೕ                    (20.3) 
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where ݀௜௝is the distance between observations and α is the value for alpha.  It is automatically 

assumed that alpha will be negative whether the user puts in a minus sign or not.  The user inputs 
the alpha value in this box. 
 
 Second, the weight can be defined by a restricted negative exponential whereby the 
negative exponential operates up to the specified search distance, whereupon the weight becomes 
0 for greater distances: 
 

 Up to Search distance: ܹ݄݁݅݃ݐ ൌ 	 ݁ିఈௗ೔ೕ for ݀௜௝ ൒ 0, ݀௜௝ ൑ ݀௣             (20.4) 

 
 Beyond search distance:        0   for ݀௜௝ ൐ ݀௣              (20.5) 

 
where dp is the search distance.  The coefficient for the linear component is assumed to be 1.0.    
 

Third, the weight can be defined as a uniform value for all other observations within a 
specified search distance.  This is a contiguity (or adjacency) measure.  Essentially, all other 
observations have an equal weight within the search distance and 0 if they are greater than the 
search distance. The user inputs the search distance and units in this box. 

 
 For the negative exponential and restricted negative exponential functions, substitute the 
selected value for α in the alpha box.  
 

Diagnostic test for reasonable alpha (α) value 
 
The default function for the weight is a negative exponential with a default alpha value of 

-1 in miles.  For many data sets, this will be a reasonable value.  However, for other data sets, it 
will not.   

 
Reasonable values for alpha with the negative exponential function are obtained with the 

following procedure: 
 
1. Decide on the measurement units to be used to calculate alpha (miles, kilometers, 

feet, etc).  The default is miles. CrimeStat will convert from the units defined for the 
Primary File input dataset to those specified by the user. 
 

2. Calculate the nearest neighbor distance from the Nna routine on the Distance 
Analysis I page.  These may have to be converted into units that were selected in step 
1 above.  For example, if the Nearest Neighbor distance is listed as 2000 feet, but the 
desired units for alpha are miles, convert 2000 feet to miles by dividing the 2000 by 
5280. 
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3. Input the dependent variable as the Z (intensity) variable on the Primary File page. 
 

4. Run the Moran Correlogram routine on this variable on the Spatial Autocorrelation 
page (under Spatial Description).  By looking at the values and the graph, decide 
whether the distance decay in this variable is very ‘sharp’ (drops off quickly) or very 
‘shallow’ (drops off slowly). 
 

5. Define the appropriate weight for the nearest neighbor distance: 
 

a. Assume that the weight for an observation with itself (i.e., distance = 0) is 1.0. 
 

b. If the distance decay drops off sharply, then a low weight for nearby values 
should be given.  Assume that any observations at the nearest neighbor 
distance will only have a weight of 0.5 with observations further away being 
even lower. 
 

c. If the distance decay drops off more slowly, then a higher weight for nearby 
values should be given. Assume that any observations at the nearest neighbor 
distance will have a weight of 0.9 with observations further away being lower 
but only slightly so. 

 
d. An intermediate value for the weight is to assume it to be 0.75. 

 
6. A range of alpha values can be solved using these scenarios: 

 
a. For a sharp decay, alpha is given by: 

 

ߙ   ൌ 	 ௅௡ሺ଴.ହሻ

ேே೏೔ೞ೟ೌ೙೎೐
                    (20.6) 

 
b. For a shallow distance decay, alpha is given by: 

 

ߙ   ൌ 	 ௅௡ሺ଴.ଽሻ

ேே೏೔ೞ೟ೌ೙೎೐
                    (20.7) 

 
c. For an intermediate decay, alpha is given by: 

 

ߙ   ൌ 	 ௅௡ሺ଴.଻ହሻ

ேே೏೔ೞ೟ೌ೙೎೐
                    (20.8) 

 
In all three equations, NNdistance is the nearest neighbor distance.  
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 These calculations will provide a range of appropriate values for α.  The diagnostics 
routine automatically estimates these values as part of its output. 
 
   Value for 0 distance between records 
 
 The advanced options dialogue has a parameter for the minimum distance to be assumed 
between different records.  If two records have the same X and Y coordinates (which could 
happen if the data are individual events, for example), then the distance between these records 
will be 0.  This could cause unusual calculations in estimating spatial effects.  Instead, it is more 
reliable to assume a slight difference in distance between all records.  The default is 0.005 miles 
but the user can modify this (including substituting 0 for the minimal distance). 
 

Output 
 
 The output depends on whether an MLE or an MCMC model has been run. 
  
 Maximum Likelihood (MLE) Model Output 
  
 The MLE routines (Normal, Poisson, Poisson with linear correction, MLE Poisson-
Gamma, Binomial Probit, and MLE Binomial Logit/Logistic) produce a standard output which 
includes summary statistics and estimates for the individual coefficients.   
 
  MLE Summary Statistics 
  
 The summary statistics include: 
 
   Information About the Model 
 

1. The data file 
2. The dependent variable 
3. The number of cases 
4. The degrees of freedom (N – number of parameters estimated) 
5. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Binomial Logit) 
6. The method of estimation (MLE) 

 
   Likelihood Statistics 
 

7. Log-likelihood estimate, which is a negative number.  For a set number of 
independent variables, the more negative the log-likelihood the better. 
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8. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  
This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

9. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

10. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

11. Bayesian Information Criterion (BIC), sometimes known as the Schwartz 
Criterion (SC), adjusts the log-likelihood for the degrees of freedom.  The smaller 
the BIC, the better. 

12. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

13. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

14. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables. 

15. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 

16. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 

 
   Model Error Estimates 

 
17. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 

smaller MAD is better. 
18. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 

better. 
19. Mean Squared Predictive Error (MSPE).  For a set number of independent 

variables, a smaller MSPE is better. 
20. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 

better. 
21. Squared multiple R (for linear model only).  This is the percentage of the 

dependent variable accounted for by the independent variables.  
22. Adjusted squared multiple R (for linear model only).  This is the squared multiple 

R adjusted for degrees of freedom. 
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   Dispersion Tests 
 

23. Adjusted deviance.  This is a measure of the difference between the observed and 
predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates over-
dispersion. 

24. Probability of adjusted deviance. This is the Pearson Chi-square test with 1 degree 
of freedom. 

25. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for degrees 
of freedom.  The smaller the Pearson Chi-square, the better. A value greater than 
1 indicates over-dispersion. 

26. Probability of adjusted Pearson Chi-square.  This is the Pearson Chi-square test 
with 1 degree of freedom. 

27. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  For example, in a pure Poisson distribution, the dispersion 
should be 1.0.  In practice, a ratio greater than 10 indicates that there is too much 
variation that is unaccounted for in the model.  Either add more variables or 
change the functional form of the model. 

28. Z-test for dispersion multiplier (Poisson models only).  This is a test for whether 
the dispersion parameter is significantly greater than that assumed by the Poisson 
model.  It is a test of over-dispersion. 

29. P-value for Z-test of dispersion parameter (Poisson models only).  This is the one-
tail probability level associated with the Z-test. 

30. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 
 

  MLE Individual Coefficient Statistics 
 
 For the individual coefficients, the following are output: 
 

31. The coefficient.  This is the estimated value of the coefficient from the maximum 
likelihood estimate. 

32. Standard Error.  This is the estimated standard error from the maximum 
likelihood estimate. 

33. Pseudo-tolerance.  This is the tolerance value based on a normal prediction of the 
variable by the other independent variables. 

34. Z-value.  This is asymptotic Z-test that is defined based on the coefficient and 
standard error.  It is defined as Coefficient/Standard Error. 

35. p-value.  This is the two-tail probability level associated with the Z-test. 



20.14 

 Table 20.1 show the output for an MLE Poisson-Gamma model that relates the number of 
Houston 2007-09 burglaries to the number of 2008 households and the 2000 median household 
income of Traffic Analysis Zones. 
 

Table 20.1: 

Maximum Likelihood Output for Poisson-Gamma Model 
 
 Model result: 
 Data file:                         Burglaries_within_City_of_Houston.dbf 
 DepVar:                            BURG2006 
 N:                                 1179 
 Df:                                1175 
 Type of regression model:          Poisson-Gamma-no spatial autocorrelation 
 Method of estimation:              MLE 
 
      Likelihood statistics 
 Log-likelihood:                    -4430.800180 
 AIC:                               8869.600361 
 BIC/SC:                            8889.890048 
 Deviance:                          1390.149554 P-value of Deviance:   0.0001 
 Pearson Chi-Square:                1112.717355 P-value of Chi-Square: 0.0001 
 
      Model error estimates 
 Mean absolute deviation:           39.580568 
      1st (highest) quartile:       124.121350 
      2nd quartile:                 19.377810 
      3rd quartile:                 6.195620 
      4th (lowest) quartile:        8.940150 
 Mean squared predicted error:      62031.156586 
      1st (highest) quartile:       242037.095867 
      2nd quartile:                 6445.778853 
      3rd quartile:                 118.261739 
      4th (lowest) quartile:        154.880457 
 
      Dispersion tests 
 Adjusted deviance:                 1.183106  P-value of Deviance:   n.s. 
 Adjusted Pearson Chi-Square:       0.946993  P-value of Chi-Square: n.s. 
 Dispersion multiplier:             1.534057  Z= 910.799548 P-value: 0.0001 
 Inverse dispersion multiplier:     0.651866 
 
----------------------------------------------------------------------------- 
                                            Pseudo- 
 Predictor   DF  Coefficient  Stand Error   Tolerance   z-value      p-value 
 INTERCEPT   1     2.321019     0.083077            .    27.938042    0.001 
    HH2006   1     0.001160     0.000066     0.993563    17.661356    0.001 
MEDHHINC00   1    -0.000008     0.000002     0.993563    -5.129752    0.001 
----------------------------------------------------------------------------- 
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 Markov Chain Monte Carlo (MCMC) Model Output 
 
 The MCMC routines (Normal-CAR/SAR, Poisson-Gamma, Poisson-Gamma-CAR/SAR, 
Poisson-Lognormal, Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-
CAR/SAR) produce a standard output and an optional expanded output.  The standard output 
includes summary statistics and estimates for the individual coefficients.  Background 
information on these models is found in chapters 16, 17, 18, and 19.  
 
  MCMC Summary Statistics 
  
 The summary statistics include: 
 

Information About the Model 
 

1. The dependent variable 
2. The number of records 

The sample number.  This is only output when the block sampling method is used. 
3. The number of cases for the sample.  This is only output when the block sampling 

method is used. 
4. Date and time for sample.  This is only output when the block sampling method is 

used 
5. The degrees of freedom (N – number of parameters estimated) 
6. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Poisson-Gamma-CAR/SAR, Poisson-Lognormal, 
Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-CAR/SAR) 

7. The method of estimation 
8. The number of iterations 
9. The ‘burn in’ period 
10. The block size is the expected number of records selected for each block sample.  

The actual number may vary. 
11. The number of samples drawn.  This is output when the block sampling method 

used. 
12. The average block size. This is output when the block sampling method used. 
13. The type of distance decay function used. This is output for models that use CAR 

or SAR spatial autocorrelation functions. 
14. Condition number for the distance matrix.  If the condition number is large, then 

the model may not have properly converged.  This is output for the Poisson-
Gamma-CAR model only.   
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15. Condition number for the inverse distance matrix.  If the condition number is 
large, then the model may not have properly converged.  This is output for the 
Poisson-Gamma-CAR/SAR, or Poisson-Lognormal-CAR/SAR models only. 

 
Likelihood Statistics 

 
16. Log-likelihood estimate, which is a negative number.  For a set number of 

independent variables, the smaller the log-likelihood (i.e., the most negative) the 
better. 

17. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  
This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

18. Deviance Information Criterion (DIC) for models only.  This adjusts the log-
likelihood for the effective degrees of freedom. The smaller the DIC, the better. 

19. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

20. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

21. Bayesian Information Criterion (BIC), sometimes known as the Schwartz 
Criterion (SC), adjusts the log-likelihood for the degrees of freedom.  The smaller 
the BIC, the better. 

22. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

23. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

24. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables.  

25. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 

26. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 
 

Model Error Estimates 
 

27. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

28. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 
better. 
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29. Mean Squared Predictive Error (MSPE).  For a set number of independent 
variables, a smaller MSPE is better. 

30. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 
better. 
 

   Dispersion Tests 
 

31. Adjusted deviance.  This is a measure of the difference between the observed and 
predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates over-
dispersion. 

32. The probability value of the adjusted deviance based on a Chi-square test with 1 
degree of freedom. 

33. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for degrees 
of freedom.  The smaller the Pearson Chi-square, the better. A value greater than 
1 indicates over-dispersion. 

34. The probability value of the adjusted Pearson Chi-square based on a Chi-square 
test with 1 degree of freedom. 

35. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  In a pure Poisson distribution, the dispersion should be 1.0.  
In practice, a ratio greater than 10 indicates that there is too much variation that is 
unaccounted for in the model.  Either add more variables or change the functional 
form of the model. 

36. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
  MCMC Individual Coefficient Statistics 
 
  For the individual coefficients, the following are output: 
 

37. The mean coefficient.  This is the mean parameter value for the N-K iterations 
where k is the ‘burn in’ samples that are discarded. With the MCMC block 
sampling method, this is the mean of the mean coefficients for all block samples. 

38. The standard deviation of the coefficient.  This is an estimate of the standard error 
of the parameter for the N-K iterations where k is the ‘burn in’ samples that are 
discarded.  With the MCMC block sampling method, this is the mean of the 
standard deviations for all block samples. 

39. t-value. This is the t-value based on the mean coefficient and the standard 
deviation.  It is defined by Mean/Std. 
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40. p-value. This is the two-tail probability level associated with the t-test.  
41. Adjusted standard error (Adj. Std).  The block sampling method will produce 

substantial variation in the mean standard deviation, which is used to estimate the 
standard error.  Consequently, the standard error will be too large.  An 

approximation is made by multiplying the estimated standard deviation by  
N

n


 

where ത݊ is the average sample size of the block samples and N is the number of 
records.  If no block samples are taken, then this statistic is not calculated. 

42. Adjusted t-value.  This is the t-value based on the mean coefficient and the 
adjusted standard deviation.  It is defined by Mean/Adj_Std.  If no block samples 
are taken, then this statistic is not calculated. 

43. Adjusted p-value.  This is the two-tail probability level associated with the 
adjusted t-value. If no block samples are taken, then this statistic is not calculated. 

44. MC error is a Monte Carlo simulation error.  It is a comparison of the means of m 
individual chains relative to the mean of the entire chain.  By itself, it has little 
meaning. 

45. MC error/Std is the MC error divided by the standard deviation.  If this ratio is 
less than .05, then it is a good indicator that the posterior distribution has 
converged. 

46. G-R stat is the Gelman-Rubin statistic which compares the variance of m 
individual chains relative to the variance of the entire chain.  If the G-R statistic is 
under 1.2, then the posterior distribution is commonly considered to have 
converged. 

47. Spatial autocorrelation term (Phi, ϕ) for CAR/SAR models only.  This is the 
estimate of the fixed effect spatial autocorrelation effect.  It is made up of three 
components: a global component (Rho, ρ); a local component (Tauphi, τφ); and a 
local neighborhood component (Alpha, α, which is defined by the user). 

48. The log of the error in the model (Taupsi).  This is an estimate of the unexplained 
variance remaining.  Taupsi is the exponent of the dispersion multiplier, eτψ.  For 
any fixed number of independent variables, the smaller the Taupsi, the better. 

  
  Expanded Output (MCMC Only) 
 
 If the expanded output box is checked, additional information on the percentiles from the 
MCMC sample are displayed.  If the block sampling method is used, the percentiles are the 
means of all block samples.  The percentiles are: 
 

49. 2.5th percentile 
50. 5th percentile 
51. 10th percentile 
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52. 25th percentile 
53. 50th percentile (median) 
54. 75th percentile 
55. 90th percentile 
56. 95th percentile 
57. 97.5th percentile 

 
 The percentiles can be used to construct confidence intervals around the mean estimates 
or to provide a non-parametric estimate of significance as an alternative to the estimated t-value 
in the standard output.  For example, the 2.5th and 97.5th percentiles provide approximate 95 
percent confidence intervals around the mean coefficient while the 0.5th and 99.5th percentiles 
provide approximate 99 percent confidence intervals. 
 
 The percentiles will be output for all estimated parameters including the intercept, each 
individual predictor variable, the spatial effects variable (Phi), the estimated components of the 
spatial effects (Rho and Tauphi), and the overall error term (Taupsi). 
 
 Table 20.2 show selective output from an MCMC Poisson-Lognormal-CAR spatial 
model that relates the number of Houston 2007-09 burglaries to the number of 2008 households 
and the 2000 median household income of Traffic Analysis Zones. The percentiles have been 
reduced to 0.5th, 2.5th, 97.5th, and 99.5th to fit the table. 
 
  Output Phi Values (CAR/SAR Models Only)  
 
 For the CAR and SAR models only, the individual Phi values can be output.  This will 
occur if the sample size is smaller than the block sampling threshold.  Check the ‘Output Phi 
value if sample size smaller than block sampling threshold’ box. An ID variable must be 
identified and a DBF output file defined.  
 
 Save Output 
 

The predicted values and the residual errors can be output to a ‘dbf’ file with a 
REGOUT<root name> file name where rootname is the name specified by the user.  The output 
is saved under a different file name.  The output includes all the variables in the input data set 
plus two new ones: 1) the predicted values of the dependent variable for each observation (with 
the field name PREDICTED); and 2) the residual error values, representing the difference 
between the actual /observed values for each observation and the predicted values (with the field 
name RESIDUAL).  The file can be imported into a spreadsheet or graphics program and the 
errors plotted against the predicted dependent variable (similar to Figure 15.3 in chapter 15). 
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Table 20.2: 

MCMC Output for Poisson-Lognormal-CAR Model 
 

DepVar:                            BURG2006 
 N:                                 1179 
 Df:                                1174 
 Number of iterations:              25000 
 Type of regression model:          Poisson-Lognormal-CAR 
 Method of estimation:              MCMC 
 Distance decay function:           Negative exponential 
 
      Likelihood statistics 
 Log-likelihood:                    -6087.822981 
      Per case:                     -5.163548 
 DIC:                               30510.458212 
 AIC:                               12185.645963 
      Per case:                     6.246823 
 BIC/SC:                            7390.366951 
      Per case:                     6.268335 
 Deviance:                          414.787381     P-value of Deviance:   0.0001 
 Pearson Chi-Square:                422.236291     P-value of Chi-Square: 0.0001 
 
      Model error estimates 
 Mean absolute deviation:           5.387914 
      1st (highest) quartile:       14.262519 
      2nd quartile:                 5.504652 
      3rd quartile:                 1.340483 
      4th (lowest) quartile:        0.493941 
 Mean squared predicted error:      149.000118 
      1st (highest) quartile:       542.211088 
      2nd quartile:                 51.172821 
      3rd quartile:                 3.835512 
      4th (lowest) quartile:        0.298416 
 
      Dispersion tests 
 Adjusted deviance:                 4.456926     P-value of Deviance:    0.0001 
 Adjusted Pearson Chi-Square:       20.611149    P-value of Chi-Square:  0.0001 
 Dispersion multiplier:             0.904852     Z = 133.050700      P-value of Z: 0.0001 
 Inverse dispersion multiplier:     1.105154 
                                                                           MC error/ 
            Mean         Std           t-value p-value   MC error     std          G-R stat 
------------------------------------------------------------------------------------------------- 
Intercept:  0.057768     0.086334      0.669124     n.s.      0.001960      0.022698     1.004705  
HH2006:    0.000156     0.000064      2.448304     0.02     2.7333e-006   0.042825     1.018906  
MEDHHINC00:-5.7411e-008  1.5194e-006   -0.037785    n.s.    2.7607e-008  0.018169     1.001817  
 Spatial autocorrelation 
(Phi):  1.660699     0.063369    26.206660     0.001   0.003377     0.053283     1.026494  
------------------------------------------------------------------------------------------------- 
 Global component 
(Rho)  0.178264     0.142500     1.250969    n.s.     0.001356     0.009515     1.000174  
 Local component 
  (Tauphi):  0.003762     0.000404     9.317862   0.001    0.000018    0.043832     1.019646  
 Neighborhood component 
(Alpha: defined)     -0.636652 Miles 
  
------------------------------------------------------------------------------------------------- 
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Table 20.2 (continued) 
 

Percentiles    0.5th       2.5th   97.5th        99.5th 
-------------------------------------------------------------------- 
Intercept: -0.153012   -0.103269  0.236579   0.300385 
HH2006:      0.000008      0.000041      0.000289      0.000339 
MEDHHINC00:  -0.000004     -0.000003     0.000003      0.000004 
Spatial component  
(Phi):    1.486406      1.530011      1.776679      1.804173 
Global component  
(Rho):    0.001125      0.005925      0.525452      0.657165 
Local component  
(Tauphi):  0.002892      0.003060      0.004649      0.005008 
--------------------------------------------------------------------  

 
 Save Estimated Coefficients 
 
 The individual coefficients can be output to a DBF file with a REGCOEFF<root name> 
file name where rootname is the name specified by the user.  This file can be used in the ‘Make 
Prediction’ routine under Regression II. 

 
Diagnostics Relevant for Spatial Regression 
 
 In chapter 15, the diagnostic tests for the regression module were described.  Among the 
statistics produced by the routine are two relevant for spatial regression. 
 
 Testing for Spatial Autocorrelation in the Dependent Variable 
 
 First, there is the Moran’s “I” test for spatial autocorrelation.  The statistic was discussed 
extensively in Chapter 5.  If the “I” is significant, CrimeStat outputs a message indicating that 
there is definite spatial autocorrelation in the dependent variable and that it needs to be 
accounted for, either by a proxy variable or by estimating a CAR or SAR model.   

 
A proxy variable would be one that can capture a substantial amount of the primary 

reason for the spatial autocorrelation.  One such variable that we have found to be very useful is 
the distance of the location from the metropolitan center (e.g., downtown).  Almost always, 
population densities are much higher in the central city than in the suburbs, and this differential 
in density applies to most phenomena including crime (e.g., population density, employment 
density, traffic density, events of all types).  It represents a first-order spatial effect, which was 
discussed in Chapters 4 and 5, and is the result of other processes.  Another proxy variable that 
can be used is income (e.g., median household income, median individual income) which tends 
to account for much clustering in an urban area.  The problem with income as a proxy variable is 
that it is both causative (income determines spatial location) as well as a by-product of 
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population densities.  The combination of both income and distance from the metropolitan center 
can capture most of the effect of spatial autocorrelation. 
 
 An alternative is to use the Poisson-Gamma-CAR model to filter out some of the spatial 
autocorrelation.  As we discussed above, this is useful only when all obvious spatial effects have 
already been incorporated into the model.  A significant spatial effect only means that the model 
cannot explain the additional clustering of the dependent variable. 
 
 Estimating the Value of Alpha (α) for CAR/SAR Models 
 
 Second, there is an estimate of a plausible value for the distance decay function alpha, α, 
in the CAR or SAR models.   The way the estimate is produced was discussed above and is 
based on assigning a proportional weight for the distance associated with the nearest neighbor 
distance, the average distance from each observation to its nearest ‘neighbor’ (see chapter 6).   
 
 Three values of α are given in different distance units, one associated with a weight of 0.9 
( a very steep distance decay, one associated with a weight of 0.75 (a moderate distance decay), 
and one associated with a weight of 0.5 (a shallow distance decay).  Users should run the Moran 
Correlogram and examine the graph of the drop off in spatial autocorrelation to assess what type 
of decay function most likely exists.  The user should choose an α value that best represents the 
distance decay and should define the distance units for it.   
 

Regression II Module 
 
 The Regression II module allows the user to apply a model to another dataset and make a 
prediction.  Figure 20.3 show the Regression II setup page.  The ‘Make prediction’ routine 
allows the application of coefficients to a dataset.   
 

Note that, in this case, the coefficients are being applied to a different Primary File than 
that from which they were calculated.  For example, a model might be calculated that predicts 
robberies for 2006.  The saved coefficient file then is applied to another dataset, for example 
robberies for 2007. 
 

There are four types of models that are fitted – normal, Poisson, binomial logit, and 
binomial probit.  For the normal model, the routine fits the equation: 

 
 ௜ܻ ൌ ଴ߚ ൅ ଵߚ ଵܺ௜ ൅ ⋯൅  ௞ܺ௞௜                  (20.9)ߚ
 
 

 



Figure 20.3:

Regression Modeling II Setup Screen
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For the Poisson model, the routine fits the equation: 
 

 ௜ܻ ൌ ݁ఉబାఉభ௑భ೔ା⋯ାఉ಼௑ೖ೔ାሾః೔ሿ               (20.10) 
  
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated).  Notice that there is no error in each 
equation. Error was part of the estimation model. What were saved were only the coefficients.    
 
 For the binomial logit model, the routine fits the equation: 
 

 ܲሺܻ ൌ 1ሻ ൌ ௘ഁబశ∑ ഁ಼೉಼శሾ೻೔ሿ
಼
భ

ଵା௘ഁబశ∑ ഁ಼೉಼శሾ೻೔ሿ
಼
భ

ൌ 	 ଵ

ଵା௘షሺഁబశ∑ ഁ಺೉಼శሾ೻೔ሿ
಼
భ ሻ

    (20.11) 

 
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated).  
 
 For the binomial probit model, the routine fits the equation: 
 

ሺܻ݌  ൌ 1ሻ ൌ ௜ሻ݌ଵሺିߔ ൌ β଴ ൅ ∑ β୏X୏୏
ଵ       (20.12) 

           
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated), and Φ is the cumulative standard 
normal distribution, 
 

For all four types of model, the coefficients file must include information on the intercept 
and each of the coefficients.  The user reads in the saved coefficient file and matches the 
variables to those in the new dataset based on the order of the coefficients file.   
 
 If the model had estimated a general spatial effect from a CAR or SAR model, then the 
general ߔ௜ will have been saved with the coefficient files.  If the model had estimated specific 
spatial effects from a CAR or SAR model, then the specific ߔ௜ values will have been saved in a 
separate Phi coefficients file.  In the latter case, the user must read in the Phi (ߔ௜) coefficients 
file along with the general coefficient file.  
 
 Table 20.3 shows the output for the first 20 cases from a prediction of the number of 
burglaries per zone based on the estimation model shown in Table 20.2 (Poisson-Lognormal-
CAR).  The output will include all variables in the input data set plus the Phi coefficient and the 
predicted values.  The user can then calculate residuals by subtracting the predicted from the 
actual (observed) values of the dependent variable. 
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Table 20.3: 

File Output from Poisson-Lognormal-CAR Prediction of Houston Burglaries 
 

TAZ03  BURG2006  PHI  PREDICTED 

532  19 0.633593 7.922792 

534  2 ‐0.163279 7.030844 

536  2 ‐0.223977 11.555803 

530  107 1.323602 21.462356 

537  19 0.259453 15.658255 

522  55 1.537228 5.987060 

538  11 0.335330 7.432503 

516  10 0.364732 9.598958 

481  0 ‐0.350902 8.693915 

474  1 ‐0.161788 8.348133 

482  7 0.009940 12.178501 

496  2 ‐0.245535 17.342402 

548  0 ‐1.199179 13.717904 

475  4 ‐0.037407 8.166218 

435  3 ‐0.425498 8.307698 

476  1 ‐0.056756 8.897897 

484  8 0.014615 16.133065 

483  2 ‐0.066611 7.888521 

477  1 ‐0.076599 8.166218 

478  0 ‐0.050627 9.293352 

 

Conclusion 
 
 This chapter has summarized the structure of the Regression I and Regression II modules 
and most of the options that are available.  The help menu on the program will provide context-
specific help on individual items. Note that if you are using Windows Vista, Windows 7 or 
Windows 8, you must download a utility from Microsoft that allows the help menu to be viewed 
from the program.  See Chapter 1 (p. 1.17) for details. 


